
Journal of Mathematical Chemistry 9(1992)147-160 147 

BARYCENTRIC COORDINATES AND THE ORIENTATION 
OF THE CLASSICAL MIXTURE SURFACE 

William S. RAYENS 
Department of Statistics, University of Kentucky, Lexington, KY 40506, USA 

Received 16 October 1990; revised 19 July 1991 

Abstract  

The signs of the barycentric coordinates of a point exterior to a nondegenerate 
k-simplex in IR p contain useful information about how that point is positioned relative 
to the vertices of that simplex. This relationship is certainly not newly observed, with 
some of the first ideas dating back to M/3bius in 1827. However, this article presents 
some new geometrical results which further quantify the relationship and focuses on 
applying these new results to help solve the problem of finding the point on a simplex 
that is closest to a given exterior point. In particular, it is shown that the signs of the 
barycentrics can be used to immediately identify a potentially large set of facets that 
could not contain this closest point. Such results have immediate applications to the 
problem of identifying the components in a chemical linear mixture. Real PCB mixtures 
are employed to illustrate the new ideas. 

1. General background 

The geometry of a nondegenerate k-simplex, or simplicial mixture surface, in 
IR e has been exploited to successfully model linear mixtures of highly structured 
chemical classes, such as polychlorinated biphenyls (PCBs) [1,2]. Typically, the goal 
of such modelling is to identify the components in an unknown chemical mixture 
and to estimate their relative amounts. In the model developed by Burdick and 
Rayens [1], this estimation requires one to identify the point on the mixture surface 
that is closest to a given exterior point. This section briefly reviews how the geometrical 
model arises from the chemistry and how the identification problem arises from the 
geometry. Polychlorinated biphenyl mixtures provide the illustrations. 

PCBs that occur in the environment of the United States originate from one 
or more of nine industrial products known as Aroclors (registered trademark of the 
Monsanto Corporation). Each of these nine Aroclors can be characterized by a particular 
chromatogram. Algebraically, of course, a chromatogram is simply a vector in which 
the variable entries correspond to the relative concentrations of a particular set of 
constituents. For PCBs, these constituents differ according to the arrangement of 
chlorine atoms along the carbon chain associated with a biphenyl molecule. Although 
in theory there are 209 distinguishable arrangements, far fewer are generally available 
in practice. In the application that will be discussed later in this article, a particular 
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Aroclor was identified with a vector that reflected the relative concentrations of  93 
congeners. Likewise, an environmental or biological mixture of  two or more of  
these Aroclors will correspond to a particular vector of constituent concentrations 
in IR 93. This mixture chromatogram is often taken to be a nonnegative weighted 
average of  the chromatograms associated with the component Aroclors that are 
present in the mixture. These weights represent the relative presence of the nine 
component Aroclors in the observed mixture. To estimate these, one must jointly 
consider the mixture chromatogram and the nine component chromatograms. After 
the estimation is completed, the unknown mixture is said to be classified. 

The estimation of these component proportions can be informal, say based 
on the chemist's experience with the substances at hand. However, the assumption 
that the mixture chromatogram is a linear combination of the component chromatograms 
allows more fon ta l  reasoning to be applied. For instance, all nonnegative linear 
combinations of  the nine component chromatograms generate an eight-dimensional 
simplex in ~93, with each of the component chromatograms corresponding to a 
vertex. This simplicial surface is often called a mixture surface. A mixture that is 
50% Aroclor 1016 and 50% Aroclor 1221 should admit a chromatogram that, as a 
vector in IR 93, is approximately in the middle of the line segment joining these two 
vertex chromatograms. An equal mix of all nine of the Aroclors would correspond 
to the centroid of the mixture surface. Thus, the positioning of the mixture chromatogram 
relative to the vertex chromatograms suggests which Aroclors are actually present 
in the mixture and in what relative proportions. 

From a deterministic point of  view, it is thus clear that estimating the mixing 
weights is equivalent to determining the spatial position of  the unknown relative to 
the vertices. Indeed, if the simplicial model is exact, with the vertices precisely 
estimated, and the associated laboratory processes without noise, the chromatogram 
of  an unknown mixture must lie interior to or on the surface of  the simplex. In 
practice, however, the chromatogram of such a mixture may not lie inside the 
simplex. Thus, it cannot be expressed as a nonnegative linear combination of  the 
component chromatograms. What is one to do with such an observation? If it lies 
"too far" from the simplex, then the integrity of  the model or the laboratory procedures 
may be suspect [6]. However, if it does not lie too far outside, it is plausible to 
attribute the aberration to "noise". In this case, one could identify this unknown 
with the chromatogram on the simplicial surface that is closest to that of  the exterior 
mixture. Of course, the projected chromatogram can be written as a nonnegative 
linear combination of the vertex chromatograms and, hence, the unknown mixture 
can be classified. 

As has been mentioned above, such insights were exploited by Burdick and 
Rayens. They developed a methodology that entwined discriminant analysis with 
elementary convex geometry, and arrived at a statistical model which gave formal 
interpretations to the estimates found as a result of  this closest-point identification 
[1,2,5]. They did not work with a simplex in the original variable space (IR 93, for 
the PCB example). Rather, they created another simplex from this original one 
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which had the vertices "best separated" in a rigorous sense. Their estimates of the 
mixing weights were provided by the barycentric coordinates of  the unknown mixture 
with respect to the particular mixture surface. Indeed, these coordinates provide a 
formal orientation of  the unknown mixture with respect to the component vertices 
that were discussed above. Since they are negative when and only when a vector 
is exterior to that surface, Burdick and Rayens identified any exterior vector with 
the correspondingly closest vector or point on the surface. Hence, the problem of  
finding the point on a simplex that is closest to a given exterior point arises naturally 
and critically in this context. 

This article suggests that the signs of the barycentric coordinates of  a point 
can be used to better understand the relative orientation of this point to the simplex. 
As a result, the problem of finding the point on the simplex that is closest to a given 
exterior point can be greatly simplified. In particular, it is shown that the signs of 
the barycentrics can be used to immediately discard a potentially large set of  facets 
that could not contain this closest point. These observations and the remainder of 
the paper are organized as follows. First, some basic definitions and notations are 
presented and a straightforward nonlinear programming routine for solving this 
closest-point problem is discussed. Next, barycentric coordinates are specifically 
addressed and results pertaining to their signs are proved. It is then shown how 
these results can be utilized to improve the efficiency of the aforementioned nonlinear 
programming routine (or any similar routine). Finally, real PCB data are employed 
in the context of  the above-mentioned classification problem to illustrate the 
improvements that are possible when these new results are invoked. 

2. Definitions and  a s tandard  algori thm 

Intuitively, a k-simplex is a higher-dimensional version of a triangle (2-simplex) 
and a tetrahedron (3-simplex). A k-simplex S can be defined formally as the convex 
hull determined by k + 1 linear independent points in JR p, p > k. This set of  linearly 
independent points, say {v 1, v 2 . . . . .  vk+ 1}, is usually called the vertex set of  5. 
Naturally associated with a k-simplex in IRP and a point z ~ IR e (p  > k ) is a vector 
of barycentric coordinates given by/$'i" = (ill . . . . .  flk + 1) where, intuitively, the ith 
barycentric coordinate fl~ represents the "influence" vertex vi has on the point z. One 
can calculate fl by defining U to be the p × k matrix (v 2 - v 1 . . . . .  vk + 1-  vl), and 
solving the equation ( z - v 1 )  = U ( f12 . . . . .  flk + 1) T. Since U is assumed to have full 
column rank, the solution is, of  course, (u ' ru)  -1 UT(z - vl ) = ( /32 . . . . .  fl~ + 1) T, with 

k + l  

= 1 -  Z 
i=2  

The barycentric coordinates of a point are uniquely determined by the simplex in 
question; and a point z is interior to or on the surface of  S if and only if all of  the 
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barycentric coordinates of  z relative to S are nonnegative. Indeed, such observations 
are quite old and the reader is referred to Kelly and Weiss [3] if more details are 
needed. 

Algorithms to find the point on a simplex that is closest to a given exterior 
point are not difficult to construct. For example, a class of  routines, known as 
"gradient projection methods" can be created by employing the Kulm-Tucker  theorem. 
This theorem gives necessary conditions for the local minima of  a nonlinear 
(continuously differentiable) function of  several variables, subject to certain linear 
constraints. If, in addition, the function is convex, the conditions are also sufficient 
to guarantee that any local minimum is an absolute minimum. In the context of  this 
paper, the nonlinear function is simply the squared distance between z and z*, say 
F(z),  where z ~ 5. Since this function is convex, the Kuhn-Tucke r  theorem can be 
used to identify the absolute minimum of F, subject to the linear constraints imposed 
by requiring z to be in the closure of  ,5. 

It should be noted that the linear constraints imposed by the simplex are 
usually given in the form alrz + b i <_ O, for i = 1, 2 . . . . .  k + 1, and not in the form 
of  a specified vertex set. However,  it is simple to translate the vertex specif icat ion 
to these inequality constraints. That is, suppose OT= (t31 . . . . .  ilk+l) are the barycentric 
coordinates of z with respect to S. Following the above notation, it is clear 
that the requirement that flj> 0 for j = 2 . . . . .  k + 1 is equivalent to the require- 
ment that (U'rU)-1UT(z- vl)  > 0, where v I is an arbitrary choice of  origin. Setting 

v ( z_  vi) > 0, W = (UTU)-IU T, the requirements (for i = 2 . . . . .  k + 1) translate to w i- ~ 
where wi r is the j th  row of W, j = 1, 2 . . . . .  k. For i = 1, 

(1 - - ( 3 2 + . . .  +3k+ l ) )~0  iff 

[1 - w l ) ' ( z  - v l )  - . . .  - w T ( z  - V l )  ] _> 0 

[wT(Z-  v 1) + . . .  + w~'(Z- v l ) -  1] < 0. 

iff 

Hence, the linear constraints that define the k-simplex can be written in the form 
aTg + b i < 0, where 

~" T ) ~  T and bl = T alT = ( W  + . . .  + W k W+ , --W+ V 1 -- 1", 

and for i > 2 ,  

al !~ = -w~'--1, and b i  = w)'--i v i .  

Such a constraint is said to be active at z if a]~.'z + b i = 0. Otherwise, the constraint 
is said to be inactive. For a specific z, let l(z) denote the set of  all indices corresponding 
to active constraints at z. Having established this notation, the Ku lm-Tucke r  theorem 
can be stated as follows: 
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THEOREM (KUHN-TUCKER) 

Suppose S is a region in IR p described by k + 1 inequalities of  the form 
aTz + bi < O. Suppose, further, that F is a convex continuously differentiable function 
in 5. Then, F(~) < F(z) for all z ~ 5 if and only if there exist scalars #i > 0 such 
that 

V F +  ~ # i a l r = o  T, 
i e l ( z )  

where V F  denotes the gradient of F (taken, by convention, to be a row vector). 

The following (useful, though not surprising) note verifies that the form of  
the constraints just obtained is reasonable and provides a geometrical understanding 
of  the conditions of Kuhn-Tucker .  

THEOREM 1 

(a) The vector ai, as defined above, is perpendicular to the facet of  S opposite 
the ith vertex. 

(b) For any Z > 0 and j ~ 1(Zo), Zo + X(aj) admits 15) < 0. 

Proof 

Some observations are necessary. The simplex S is the convex hull of  
{vi . . . . .  Vk+ 1}. This same simplex, translated to the origin, is represented by the 
convex hull of  { v 2 - v  1 . . . . .  v k + l - v l }  - { u l  . . . . .  uk}. For i s  1, the facet of  5 
opposite vertex vi is the convex hull of  {vj} j , i ,  hence, parallel to the convex hull 

r ~k+ 1 
of {uj}j~ i_ 1. The facet opposite vertex v 1 is the convex hull of  tvjjj=2, parallel 
to the  c o n v e x  hul l  o f  {vj- v2} =3. N o t i c e  that  vj + i - v 2  = Uj + 7_) 1 - v 2 = t l j -  U 1. 

Hence, the facet opposite vertex v 1 is parallel to the span {uj-ui}~= 1- 

(a) Suppose i ~ 1. Then, a i is perpendicular to the facet opposite v i if ai is 
perpendicular to each of the generators in the set  {Uj}j~ i_ 1" Clearly, 

=IwT "' 
( u T u ) - I u T u  = I(k) L ww Ul 

. . .  W T U k 

. . .  W T ll k 

:1 

where I(k) is the k x k identity matrix. It follows that 

T T f 0  if j~: i-- 1, 
al Uj  = - - W i _  1 Uj  = l 1 if j =  i -  1. 
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Suppose i = 1. Then 

k k 

i---1 i=1 

= ( 0 + . . .  - 1  + . . . 0 ) - ( 0 -  1 + 0 + . . . + 0 )  
( i = j +  1) 

=0.  

Hence, a 1 is perpendicular to a linear subspace parallel to the facet opposite vl, and 
thus perpendicular to this facet. 

(b) This part is trivial: 

[3j = - a y t z o  + Za )] - bj 

= - (afz0 + bj) -/1. l[ a t II 2 

=-;~llayll 2 (since j E I(zo) ) 

<0 .  [] 

Hence, as expected, the aT vectors are to be interpreted as outward normal 
directions. Further, the point on ,5, say ~, which is closest to a given point Zo can 
be characterized as the unique point at which the negative gradient of  F can be 
written as a nonnegative linear combination of  these normal directions. A trivial 
calculation establishes the negative gradient of  F and any point z* to be a scalar 
multiple of the vector from z* to Zo. 

This geometrical intuition can be used in conjunction with a standard proof 
to K u h n - T u c k e r  to develop a numerical algorithm for finding this closest point. 
Russell [8], for example, outlines a method for solving this problem for general 
convex polytopes, and his ideas are easily adapted to the special case of a k- 
simplex. For instance, a convergent procedure can be constructed by producing a 
sequence of points in 5, {zj} generated by the recursion relation Z j +  1 = Zj + ~j rj, 
where rj is a feasible direction at zj and ~j is the step parameter which determines 
how far one should move in the feasible direction. It can be shown that a direction 
is feasible at zj if zj + ;tj r ~ S and F(zj + A,j r) < F(zj) for small positive values of 
~,j. While the choice of A.j is not always an easy task, it is actually straightforward 
in the case of a l inear-quadrat ic  objective function F, as is the squared-distance 
function. The reader is referred to Russell for details as to how rj and A, can be 
effectively chosen. Note that each iteration in this algorithm requires essentially the 
same type of calculation, namely the determination of  r and &. Clearly, this procedure 
will try to identify points that move successively in the direction of  the projection 
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Z 

vertex 1 vertex 3 

Fig. 1. Geometrical basis for algorithm. 

of the negative gradient onto the facet of the simplex that zj is on (hence the term 
"gradient projection technique"). The arrows in the diagram of fig. 1 indicate how 
the technique would locate a typical closest point in three iterations. 

3. The signs of the barycentrics 

Certainly, the task of trying to find this closest point could be simplified by 
having some formal method for determining how the exterior point is positioned 
relative to the vertices of the simplex. That is, if a point is clearly identifiable as 
isolated from certain facets, then it makes no sense to allow any procedure to look 
there for the closest point. To a useful extent, this idea of orientation can be 
properly quantified. The following result, which is quite old, helps to provide the 
necessary motivation. 

RESULT 

Suppose Zo admits barycentric coordinates (ill . . . . .  ilk+ 1) with a certain 
subset of these, say {ill, f12 . . . . .  flq), without loss of generality, all being negative. 
Denote by H i the hyperplane determined by the facet of the simplex opposite the 
vertex v i, i = 1, 2 . . . . .  q. Each of these hyperplanes will divide IR k into half-spaces 
and Zo will be separated from the simplex in the sense that Zo and S will lie in 
opposite half-spaces. 

Figure 2 illustrates this relationship between the signs of the barycentrics of 
a point and its relative position to a 2-simplex (triangle). The separating property 
that characterizes this relationship, flagged by the presence of negative barycentric 
coordinates, can be quite useful. For example, the following theorem can now be 
proved. 
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Fig. 2. Relationship of signs to orientation. 

THEOREM 2 

Suppose z ~ IR p - .5 with barycentric coordinates (ill . . . . .  flk + 1), and suppose 
without loss of  generality that ill,/32 . . . . .  fit > 0 and fit + 1 . . . . .  flk + ~ < 0. If  Fj 
denotes the ( g -  1)-dimensional facet opposite vertex v j ,  then the point on S that 
is closest to z must lie on an F i where t + 1 < j <  k + 1. 

P r o o f  

It will be necessary to set up some notation first. Let H r denote the unique 
hyperplane determined by the ( g - 1 ) - d i m e n s i o n a l  facet Fr opposite vertex v r 
(called a "face-hyperplane"). Use A- to denote the set of  all face-hyperplanes 
that  are oppos i t e  ver t ices  that admit  a nega t ive  barycent r ic .  That  is, A- 
- {Ht+ 1, H t + 2  . . . . .  H,~+ 1}- Finally, let c be any point in the closure of  5, and let 
S denote the line segment form z to c, parameterized as {Q,~= ( 1 -  a ) z +  ( a ) c :  
a e [0, 1] }. S must cross all of  the face-hyperplanes in A-before  reaching c; denote 
S n 1-11. by Qai.  In fact, it will be shown that if H i ~ A- and 0 -< aj < a i -< 1 for all 
j between t + l  and k + 1, then S n H i = z* ~ S. 

Suppose z" ff S. Then there exists a face-hyperplane which separates z* from 
S; call this hyperplane H m. It is clear that H m ~ H i. Hence, there exists an a m ~ [0, 1 ] 
so that Zm = Q,~,,, = S r~ H,,, and ai < an < 1. Also, S ~ H m, it can intersect H,,, at 
most once; thus, it must be that z and z* are in the same (closed) half-space 
determined by H,, (recall, z = Q0, z* = Qai '  and Zm = Qa,,,, with 0 < a i < am < 1). 
Hence, H m ~ A - ,  separating z from S, with a i < am. This is a contradiction, so it 
must be that z* e S. [] 

This result notes, of  course, that any line segment from a point z ~ S to a 
point c ~ S clearly has to cross all hyperplanes opposite vertices where the barycentric 
coordinates o f z  corresponding to those vertices are negative. The result then shows 
that the point where the last such hyperplane it crosses is, in fact, a point on the 
simplex. The following lemma is simply a special case of this theorem. 
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LEMMA 

Suppose z ~ IR p - 5 with barycentric coordinates (ill . . . . .  flk + 1), and suppose 
also that fli > 0 for all i ~:j, and flj < 0. If Fj denotes the (g - 1)-dimensional facet 
of  S that is opposite vj,  then the point on ,5 that is closest to z must lie on Fj. 

The point of the lemma is obvious. If z admits a vector of barycentric coordinates 
in which only flj is negative, then it is certain that the closest point lies on the facet 
of  ,5 opposite v i. Hence, one would want to start looking on this facet (as opposed 
to any of  the other k facets). Theorem 2 is simply a generalization of  this idea, and 
its use if equally clear. The facet which contains the closest point must correspond 
to the convex hull of  a set of  k vertices with exactly t of  these admitting nonnegative 
barycentrics for z. As an example, suppose the barycentric coordinates of a point 
z relative to some 4-simplex with vertices {vl, v 2, v 3, v4} admits the signs 
( + , - ,  - ,  +). Since v 1 and v 4 are positive, it is certain that the point on the simplex 
which is closest to z must lie on one of  the two facets formed by the vertices 
{vl, v2, v4} or {Vl, v3, v4}. 

Clearly, theorem 2 is most useful when there are a lot of  vertices involved 
and only a few negative barycentrics have been admitted. In such a case, one can 
eliminate a large number of  facets from the search for the closest point. Even when 
the set of  "candidate facets" for containing the closest point is large, one can, at 
the very least, intelligently choose a facet on which to start the search. It should 
be pointed out that it is not true that the closest point has to lie on the lower- 
dimensional facet (or "edge") determined by only the vertices that admit positive 
barycentrics. Counter-examples are easy to construct. However, it will be seen 
below that such edges are often wise places to look. 

4. Application and some comparisons 

As was discussed in the introduction, an irregular k-simplex arises naturally 
in chemometrics when one is trying to decompose a physical mixture having k + 1 
potential constituents. The methodology that has been mentioned, due to Burdick 
and Rayens, modelled the unknown compound x as an observation from a multivariate 
normal population having mean 5".~ = 1 ai/-ti and covariance matrix ~,  where #i is the 
(true) unknown mean of  the ith group, Y- is a covariance matrix common to all g 
groups, and the ai's are the unknown mixing proportions that one desires to estimate. 
The basic steps involved in the construction of the Burdick/Rayens simplex model 
can be roughly summarized as follows: 

(i) On the basis of  some training set Yn xp, perform a standard linear discriminant 
analysis, producing a (g - 1)-simplex defined by the vertex set {~i}~_ 1, where 
zi is the sample mean of the ith group of discriminant scores (calculated 
from Y). 
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(ii) Given an unknown observation y, calculate the corresponding discriminant 
score z. Find the point, say ~, on the simplex that is closest to z. Properly 
quantified, the barycentric coordinates of~ relative to the simplex will represent 
maximum likelihood estimates of the ~x/s. Also, once the a / s  are estimated, 
the mixture is said to be classified. 

Although there are some admittedly naive assumptions that accompany this 
model, it has been applied quite successfully to real PCB and dioxin data. For 
details on the model development, formal interpretations of  the estimated mixing 
proportions and real-data applications, the reader is referred to Clayton et al. [2], 
Burdick and Rayens [1], and Rayens [5-7].  It is clear from (ii) that the closest-point 
problem has to be solved every time this model is invoked to classify an unknown 
mixture. Hence, insight into the orientation of an unknown relative to the mixture 
surface would prove particularly helpful to users of that methodology. In their PCB 
application, Burdick and Rayens were dealing with g = 9 groups (corresponding to 
the nine Aroclors), and the simplex that resulted in step (ii) was an 8-simplex in 
IR 8. That is, it was the convex hull of  nine linearly independent vertices, each of 
which was a point in ~8. These vertices are to be identified with Aroclors 1016, 
1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268, respectively. Hence, there are 
nine eight-dimensional facets on this simplex. 

In order to test the effectiveness of their model, Burdick and Rayens had 
access to 38 runs on a pseudo-unknown mixture of Aroclors 1016, 1254, and 1260. 
Owing to variability in the data, and imperfections in the modelling, all 38 of  these 
unknowns fell outside the simplex mentioned in (i). The actual distribution of  the 
signs of the barycentrics for these 38 runs is shown in table 1. It is clear, for 
example, that the point on the simplex closest to the first observed mixture is on 
one of the four 8-dimensional facets partially formed by vertices 1, 2, 6, 7, and 8. 
In fact, the overall distribution, in conjunction with theorem 2, suggests that any 
routine that seeks to solve the closest-point problem for these unknowns should 
only look on these four facets, and ignore the other five, which is a significant 
reduction in the scope of the search. In lieu of developing a new routine, however, 
one could, at the very least, use this new information to effectively initialize an 
existing routine. For example, since the replications on the PCB mixture appear to 
be isolated from the vertices corresponding to Aroclors 1232, 1242, 1248, and 1268, 
such a routine should be started away from the five facets that contain all of  these 
vertices. In fact, a "correct" start alone can significantly reduce the total number of 
iterations required by this procedure to "classify" the 38 runs. Since Burdick and 
Rayens used the quadratic programming procedure that was discussed above to 
identify these points, it will be used to construct some comparisons. Specifically, 
this algorithm was started at each of six different places: 

S l: the centroid of the simplex (used by Burdick and Rayens). 

$2: a randomly chosen point in the closure of the simplex. 
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T a b l e  1 

D i s t r i b u t i o n  o f  s i g n s  

A r o c l o r  

R u n  1 0 1 6  1 2 2 1  1 2 3 2  1 2 4 2  1 2 4 8  1 2 5 4  1 2 6 0  1 2 6 2  1 2 6 8  

1 + + - - - + + + - 

2 + + - + - + - + - 

3 + + - - - + - + - 

4 + + - + - + + + - 

5 + - + - - + - + + 

6 + + - - - + + + - 

7 + + - + - + + + - 

8 + + - + - + + + - 

9 + + - + - + + + - 

1 0  + + - - - + + + - 

1 1  + - + - - + - + - 

1 2  + + - - - + + + - 

1 3  + - + - - + + + - 

1 4  + + - + + + + + + 

1 5  + + - - - + + + - 

1 6  + + - + - + + + - 

1 7  + + - + - + + + - 

1 8  + + - - - + + + - 

1 9  + + - - - + + + - 

2 0  + + - - - + + + - 

2 1  + + - - - + + + - 

2 2  + + - - - + + + - 

2 3  + + - - - + + + - 

2 4  + + - - - + + + - 

2 5  + + - - - + + + - 

2 6  + + - - - + + + - 

2 7  + + - - - + + + - 

2 8  + + - - - + + + - 

2 9  + + - - - + - + - 

3 0  + + - - - + + + - 

3 1  + + - - - + + + - 

3 2  + + - + - + + + - 

3 3  - + - + + + + + + 

3 4  - + - + + + + + + 

3 5  + - + - + + + + - 

3 6  - + - + + + + - + 

3 7  - + - + - + + - + 

3 8  - + - + - + + - + 

T o t a l  m i n u s e s  5 4 3 4  2 4  3 3  0 5 3 3 1  
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Table 2 

Number of steps to convergence 

Run S 1 $2  $3 $4 $5 $6  

1 7 7 3 3 6 7 

2 6 8 2 5 7 9 

3 6 7 2 3 5 6 

4 6 7 2 3 5 6 

5 6 6 4 5 7 7 

6 6 6 2 2 5 6 

7 6 6 2 3 5 6 

8 7 7 3 4 6 7 

9 7 7 3 4 6 7 

10 6 6 2 2 5 6 

11 7 9 3 5 7 7 

12 6 6 2 2 5 6 

13 6 6 2 4 6 6 

14 4 4 4 3 3 6 

15 6 6 2 2 5 6 

16 6 6 2 4 6 6 

17 6 7 2 3 5 6 

18 6 7 2 2 5 6 

19 6 7 2 2 5 6 

20 6 7 2 2 5 6 

21 6 7 2 2 5 6 

22 6 7 2 2 5 6 

23 7 7 3 3 6 7 

24 6 7 2 2 5 6 

25 6 7 2 2 5 6 

26 6 6 2 2 5 6 

27 7 7 3 3 6 7 

28 7 8 3 3 6 7 

29 6 8 2 3 5 6 

30 7 7 3 3 6 7 

31 7 7 3 3 6 7 

32 7 7 3 4 6 7 

33 2 2 4 5 1 11 

34 2 2 3 4 1 12 

35 6 6 2 5 6 7 

36 4 4 5 2 3 11 

37 3 3 3 2 2 8 

38 3 3 3 5 2 7 

Avg. 5.8 6.2 2.6 3.1 5.0 6.9 
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$3: a point on a lower-dimensional facet determined by considering those 
vertices which admitted the highest concentration of  pluses over all 38 
of the replications. This starting point was then used for all of  the 38 
points. 

$4: a point on a lower-dimensional facet determined by considering only 
those vertices which admitted positive barycentrics for a given replication. 
Hence, the decision as to where the procedure should be started was made 
individually for each run. 

$5: a point on the eight-dimensional facet corresponding to the greatest 
concentration of pluses. 

$6: an isolated point (i.e. a poor choice). 

The distribution of +'s and - ' s  in table 1 suggests that for starting $3 one 
could choose a point on the lower-dimensional facet determined by vertices 1, 2, 
6, 7, and 8 (Aroclors 1016, 1221, 1254, 1260, and 1262). If the procedure is 
initiated as directed by $4, then it would start on the edge formed by these same 
vertices for the first observation, but would choose the edge formed by the vertices 
1, 2, 4, 6, and 8 for observation 2, etc. To start at $5, one might choose the facet 
determined by vertices 1, 2, 6, 7, and 8 in conjunction with 4, 5, and 9 (leaving 
3 out since it admitted the most negatives, overall). Likewise, it is clear from 
table 1 that starting on the "edge" formed by vertices 3, 4, 5, and 9 would constitute 
a poor place to start, since this edge is isolated away from the data. 

The gradient projection routine outlined above was initiated at each of  these 
six places and executed for the 38 runs. In each case the number of  iterations needed 
until convergence was recorded. The results are shown in table 2. It is clear from 
the table that starting with the centroid of the simplex is not a bad idea. Since the 
above-mentioned procedure will follow the negative gradient of F to the surface of 
the simplex, then one is somewhat assured of being oriented correctly after the 
second step. Certainly this can be a better strategy than unintelligently choosing a 
place on the surface to start, as the average under the "Poor" column supports. Also, 
while beginning on the eight-dimensional facet that omitted vertex 3 yielded a 
better performance than starting at S1, $2, or $5, it is clear that starting on the 
lower-dimensional edges suggested by the positives is even more efficient. It is 
possible to make some probabilistic statements about why such an edge tends to be 
a good place to start, even though it is not true that the closest point has to lie on 
that edge. However, the basic intuition is clear in their absence. 

5. Conclusions 

The principal purpose of this article was to point out that there is information 
contained in the signs of the barycentric coordinates that is a potentially useful 
addition to one's understanding of  the simplicial mixture surface. This new information 
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is obtained at little or no expense, since calculating the barycentric coordinates for 
N data points amounts to the inversion of one symmetric matrix. The practical need 
to address this problem arose from the author's involvement in the application 
presented in the paper, namely the classification of linear mixtures. Although this 
application is of particular interest to chemometricians, using the results proved in 
this article to efficiently start existing nonlinear routines for achieving this classification 
does not exhaust the potential worth of the ideas. One could, presumably, construct 
an algorithm which uses only the signs of the barycentrics to solve the closest point 
problem. It is also worth noting that a procedure for solving this problem that is 
of current interest to some numerical analysts, due to Iusem and De Pierro [7], relies 
on simultaneous projections on all of the face-hyperplanes. The results in this paper 
suggest that these ideas could be improved upon by dismissing from their algorithm 
those face-hyperplanes that cannot contain the closest point. However, the purpose 
of this paper was not to develop a completely new routine for solving the closest- 
point problem, but rather to highlight the information that is in the signs of barycentric 
coordinates for practitioners who routinely work with a linear mixture surface. 
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